一、数据集转化 - VOC 转 Yolo

目录结构

- dataset
  - 2023
    - Annotations
    - Imagesets
    - images
    - labels
    - train.txt
    - test.txt
    - val.txt
  1. 生成Imagesets目录下的文件内容
import os
import random
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--xml_path', default='D:\datasets\2023\Annotations', type=str, help='input xml label path')
parser.add_argument('--txt_path', default='D:\datasets\2023\Imagesets', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 0.9
train_percent = 0.7  #这里的train_percent 是指占trainval_percent中的
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_train.close()
file_val.close()
file_test.close()
  1. 转成yolo格式
#该脚本文件需要修改第10行(classes)即可
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
from tqdm import tqdm
import os
from os import getcwd

sets = ['train', 'test','val']
#这里使用要改成自己的类别
classes = ['red', 'green', 'yellow', 'off']


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    x = round(x,6)
    w = round(w,6)
    y = round(y,6)
    h = round(h,6)
    return x, y, w, h

#后面只用修改各个文件夹的位置
def convert_annotation(image_id):
     #try:
        in_file = open('D:/datasets/2023/Annotations/%s.xml' % (image_id), encoding='utf-8')
        out_file = open('D:/datasets/2023/labels/%s.txt' % (image_id), 'w', encoding='utf-8')
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            b1, b2, b3, b4 = b
            # 标注越界修正
            if b2 > w:
                b2 = w
            if b4 > h:
                b4 = h
            b = (b1, b2, b3, b4)
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " +
                           " ".join([str(a) for a in bb]) + '\n')
     #except Exception as e:
         #print(e, image_id)

#这一步生成的txt文件写在data.yaml文件里
wd = getcwd()
for image_set in sets:
    if not os.path.exists('D:/datasets/2023/labels/'):
        os.makedirs('D:/datasets/2023/labels/')
    image_ids = open('D:/datasets/2023/Imagesets/%s.txt' %
                     (image_set)).read().strip().split()
    list_file = open('D:/datasets/2023/%s.txt' % (image_set), 'w')
    for image_id in tqdm(image_ids):
        list_file.write('D:/datasets/2023/images/%s.png\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

数据增强 https://aistudio.baidu.com/aistudio/projectdetail/4334420

import os
import cv2

import albumentations as A
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt


# 定义类
class VOCAug(object):

    def __init__(self,
                 pre_image_path=None,
                 pre_xml_path=None,
                 aug_image_save_path=None,
                 aug_xml_save_path=None,
                 start_aug_id=None,
                 labels=None,
                 max_len=4,
                 is_show=False):
        """

        :param pre_image_path:
        :param pre_xml_path:
        :param aug_image_save_path:
        :param aug_xml_save_path:
        :param start_aug_id:
        :param labels: 标签列表, 展示增强后的图片用
        :param max_len:
        :param is_show:
        """
        self.pre_image_path = pre_image_path
        self.pre_xml_path = pre_xml_path
        self.aug_image_save_path = aug_image_save_path
        self.aug_xml_save_path = aug_xml_save_path
        self.start_aug_id = start_aug_id
        self.labels = labels
        self.max_len = max_len
        self.is_show = is_show

        print(self.labels)
        assert self.labels is not None, "labels is None!!!"

        # 数据增强选项
        self.aug = A.Compose([
            A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=1),
            A.GaussianBlur(p=0.7),
            A.GaussNoise(p=0.7),
            A.CLAHE(clip_limit=2.0, tile_grid_size=(4, 4), p=0.5),  # 直方图均衡
            A.Equalize(p=0.5),  # 均衡图像直方图
            A.OneOf([
                # A.RGBShift(r_shift_limit=50, g_shift_limit=50, b_shift_limit=50, p=0.5),
                # A.ChannelShuffle(p=0.3),  # 随机排列通道
                # A.ColorJitter(p=0.3),  # 随机改变图像的亮度、对比度、饱和度、色调
                # A.ChannelDropout(p=0.3),  # 随机丢弃通道
            ], p=0.),
            # A.Downscale(p=0.1),  # 随机缩小和放大来降低图像质量
            A.Emboss(p=0.2),  # 压印输入图像并将结果与原始图像叠加
        ],
            # voc: [xmin, ymin, xmax, ymax]  # 经过归一化
            # min_area: 表示bbox占据的像素总个数, 当数据增强后, 若bbox小于这个值则从返回的bbox列表删除该bbox.
            # min_visibility: 值域为[0,1], 如果增强后的bbox面积和增强前的bbox面积比值小于该值, 则删除该bbox
            A.BboxParams(format='pascal_voc', min_area=0., min_visibility=0., label_fields=['category_id'])
        )
        print('--------------*--------------')
        print("labels: ", self.labels)
        if self.start_aug_id is None:
            self.start_aug_id = len(os.listdir(self.pre_xml_path))
            print("the start_aug_id is not set, default: len(images)", self.start_aug_id)
        print('--------------*--------------')

    def get_xml_data(self, xml_filename):
        with open(os.path.join(self.pre_xml_path, xml_filename), 'r') as f:
            tree = ET.parse(f)
            root = tree.getroot()
            image_name = tree.find('filename').text
            size = root.find('size')
            w = int(size.find('width').text)
            h = int(size.find('height').text)
            bboxes = []
            cls_id_list = []
            for obj in root.iter('object'):
                # difficult = obj.find('difficult').text
                difficult = obj.find('difficult').text
                cls_name = obj.find('name').text  # label
                if cls_name not in LABELS or int(difficult) == 1:
                    continue
                xml_box = obj.find('bndbox')

                xmin = int(xml_box.find('xmin').text)
                ymin = int(xml_box.find('ymin').text)
                xmax = int(xml_box.find('xmax').text)
                ymax = int(xml_box.find('ymax').text)

                # 标注越界修正
                if xmax > w:
                    xmax = w
                if ymax > h:
                    ymax = h
                bbox = [xmin, ymin, xmax, ymax]
                bboxes.append(bbox)
                cls_id_list.append(self.labels.index(cls_name))

            # 读取图片
            image = cv2.imread(os.path.join(self.pre_image_path, image_name))

        return bboxes, cls_id_list, image, image_name

    def aug_image(self):
        xml_list = os.listdir(self.pre_xml_path)

        cnt = self.start_aug_id
        for xml in xml_list:
            # AI Studio下会存在.ipynb_checkpoints文件, 为了不报错, 根据文件后缀过滤
            file_suffix = xml.split('.')[-1]
            if file_suffix not in ['xml']:
                continue
            bboxes, cls_id_list, image, image_name = self.get_xml_data(xml)

            anno_dict = {'image': image, 'bboxes': bboxes, 'category_id': cls_id_list}
            # 获得增强后的数据 {"image", "bboxes", "category_id"}
            augmented = self.aug(**anno_dict)

            # 保存增强后的数据
            flag = self.save_aug_data(augmented, image_name, cnt)

            if flag:
                cnt += 1
            else:
                continue

    def save_aug_data(self, augmented, image_name, cnt):
        aug_image = augmented['image']
        aug_bboxes = augmented['bboxes']
        aug_category_id = augmented['category_id']
        # print(aug_bboxes)
        # print(aug_category_id)

        name = '0' * self.max_len
        # 获取图片的后缀名
        image_suffix = image_name.split(".")[-1]

        # 未增强对应的xml文件名
        pre_xml_name = image_name.replace(image_suffix, 'xml')

        # 获取新的增强图像的文件名
        cnt_str = str(cnt)
        length = len(cnt_str)
        new_image_name = name[:-length] + cnt_str + "." + image_suffix

        # 获取新的增强xml文本的文件名
        new_xml_name = new_image_name.replace(image_suffix, 'xml')

        # 获取增强后的图片新的宽和高
        new_image_height, new_image_width = aug_image.shape[:2]

        # 深拷贝图片
        aug_image_copy = aug_image.copy()

        # 在对应的原始xml上进行修改, 获得增强后的xml文本
        with open(os.path.join(self.pre_xml_path, pre_xml_name), 'r') as pre_xml:
            aug_tree = ET.parse(pre_xml)

        # 修改image_filename值
        root = aug_tree.getroot()
        aug_tree.find('filename').text = new_image_name

        # 修改变换后的图片大小
        size = root.find('size')
        size.find('width').text = str(new_image_width)
        size.find('height').text = str(new_image_height)

        # 修改每一个标注框
        for index, obj in enumerate(root.iter('object')):
            obj.find('name').text = self.labels[aug_category_id[index]]
            xmin, ymin, xmax, ymax = aug_bboxes[index]
            xml_box = obj.find('bndbox')
            xml_box.find('xmin').text = str(int(xmin))
            xml_box.find('ymin').text = str(int(ymin))
            xml_box.find('xmax').text = str(int(xmax))
            xml_box.find('ymax').text = str(int(ymax))
            if self.is_show:
                tl = 2
                text = f"{LABELS[aug_category_id[index]]}"
                t_size = cv2.getTextSize(text, 0, fontScale=tl / 3, thickness=tl)[0]
                cv2.rectangle(aug_image_copy, (int(xmin), int(ymin) - 3),
                              (int(xmin) + t_size[0], int(ymin) - t_size[1] - 3),
                              (0, 0, 255), -1, cv2.LINE_AA)  # filled
                cv2.putText(aug_image_copy, text, (int(xmin), int(ymin) - 2), 0, tl / 3, (255, 255, 255), tl,
                            cv2.LINE_AA)
                cv2.rectangle(aug_image_copy, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 0), 2)

        if self.is_show:
            cv2.imshow('aug_image_show', aug_image_copy)
            # 按下s键保存增强,否则取消保存此次增强
            key = cv2.waitKey(0)
            if key & 0xff == ord('s'):
                pass
            else:
                return False
        # 保存增强后的图片
        cv2.imwrite(os.path.join(self.aug_image_save_path, new_image_name), aug_image)
        # 保存增强后的xml文件
        tree = ET.ElementTree(root)
        tree.write(os.path.join(self.aug_xml_save_path, new_xml_name))

        return True

# 原始的xml路径和图片路径
PRE_IMAGE_PATH = 'D:\dev\python\datasets\lightv2\images'
PRE_XML_PATH = 'D:\dev\python\datasets\lightv2\Annotations'

# 增强后保存的xml路径和图片路径
AUG_SAVE_IMAGE_PATH ='D:\dev\python\datasets\lightv2\images'
AUG_SAVE_XML_PATH = 'D:\dev\python\datasets\lightv2\Annotations'

# 标签列表
LABELS = ['red', 'green', 'yellow','off']

aug = VOCAug(
    pre_image_path=PRE_IMAGE_PATH,
    pre_xml_path=PRE_XML_PATH,
    aug_image_save_path=AUG_SAVE_IMAGE_PATH,
    aug_xml_save_path=AUG_SAVE_XML_PATH,
    start_aug_id=None,
    labels=LABELS,
    is_show=False,
)

aug.aug_image()

# cv2.destroyAllWindows()

# original_image1 = cv2.imread('/home/aistudio/work/TestImage/VOC/images/0000.jpg')
# transformed_image1 = cv2.imread('/home/aistudio/work/TestImage/VOC/images/0003.jpg')
# original_image2 = cv2.imread('/home/aistudio/work/TestImage/VOC/images/0001.jpg')
# transformed_image2 = cv2.imread('/home/aistudio/work/TestImage/VOC/images/0004.jpg')
#
# original_image1 = cv2.cvtColor(original_image1, cv2.COLOR_BGR2RGB)
# transformed_image1 = cv2.cvtColor(transformed_image1, cv2.COLOR_BGR2RGB)
# original_image2 = cv2.cvtColor(original_image2, cv2.COLOR_BGR2RGB)
# transformed_image2 = cv2.cvtColor(transformed_image2, cv2.COLOR_BGR2RGB)
#
# plt.subplot(2, 2, 1), plt.title("original image"), plt.axis('off')
# plt.imshow(original_image1)
# plt.subplot(2, 2, 2), plt.title("transformed image"), plt.axis('off')
# plt.imshow(transformed_image1)
# plt.subplot(2, 2, 3), plt.title("original image"), plt.axis('off')
# plt.imshow(original_image2)
# plt.subplot(2, 2, 4), plt.title("transformed image"), plt.axis('off')
# plt.imshow(transformed_image2)


二、运行过程异常

OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

os.environ["PYTHONUNBUFFERED"]=1

三、超参数设置

hyp.scratch-v1.yaml 和 hyp.scratch-low.yaml 的主要差异:

| 超参数 | hyp.scratch-v1.yaml | hyp.scratch-low.yaml |
| :-: | :-: | :-: |
| lr0 | 0.01 | 0.01 |
| lrf | 0.2 | 0.1 |
| momentum | 0.937 | 0.937|  
| weight_decay | 0.0005 | 0.0005| 
| warmup_epochs | 3.0 | 2.0 |    
| warmup_momentum | 0.8 | 0.8| 
| warmup_bias_lr | 0.1 | 0.1 | 
| box | 0.05 | 0.05| 
| cls | 0.5 | 0.2 | 
| cls_pw | 1.0 | 1.0|  
| obj | 1.0 | 1.0 |    
| obj_pw | 1.0 | 1.0|
| iou_t | 0.2 | 0.2|
| anchor_t | 4.0 | 4.0 |
| fl_gamma| 0.0 | 0.0|
| hsv_h | 0.015 | 0.015| 
| hsv_s | 0.7 | 0.7| 
| hsv_v | 0.4 | 0.4 |
| degrees | 0.0 | 0.0|
| translate | 0.1 | 0.1| 
| scale | 0.5 | 0.5| 
| shear | 0.0 | 0.0|
| perspective | 0.0 | 0.0| 
| flipud | 0.5 | 0.5|
| fliplr | 0.5  | 0.5|
| mosaic | 1.0 | 0.5|
| mixup | 0.0 | 0.0| 从表中可以清晰地看出,两者的主要差异在于:- lrf:学习率衰减因子,hyp.scratch-low.yaml更低
- cls:分类损失权重,hyp.scratch-low.yaml更低 
- mosaic:图像mosaic数据增强概率,hyp.scratch-low.yaml更低其他超参数两者基本一致。所以,总体来说,hyp.scratch-low.yaml采取了相对更为稳定的超参数设置,这可能会使模型训练更加平稳。而hyp.scratch-v1.yaml的设置则更激进一些,训练效果上可能会更高但也更不稳定。